

May 4, 2021

Cindy Alexopoulos, LCAM Sentry Management, Inc. 2605 Enterprise Road, East, Suite 200 Clearwater, Florida 33759

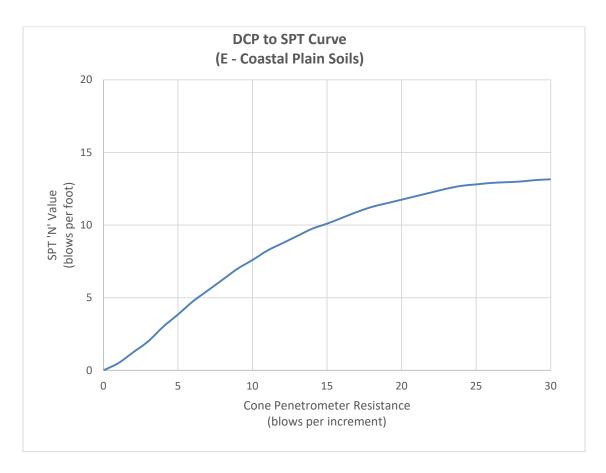
## Re: Privacy Wall Geotechnical Investigation Huntington HOA Safety Harbor Florida FGE Project Number 201452

Dear Ms. Alexopoulos:

At your request, Florida Geotechnical Engineering, Inc (FGE) completed a geotechnical investigation at the referenced property. The purpose of this investigation was to assess subsurface conditions and relatively quantify the strength characteristics of the soils supporting the privacy wall generally located along the perimeter of the Huntington HOA property. Enclosed herein is a summary of the investigative activities performed by FGE and our recommendations regarding the wall.

As part of the investigation, FGE was provided quote from Mott's Contracting Services to repair damages to the wall. In the quote, various damage mechanisms were discussed that mainly centered around moisture entering the wall. In general, FGE agrees with the assessments of Mott's Contracting Services although no geotechnical evaluations were provided. This report provides geotechnical context to the evaluation of the wall damages and repair.

## GEOTECHNICAL ASSESSMENT


FGE performed a field investigation at the subject property that consisted of a visual damage assessment of the wall, ten (10) hand auger borings, five (8) foundation test pits, and laboratory analysis of nine (9) soil samples.

#### HAND CONE PENETROMETER MEASURMENTS

The single mass dynamic cone penetrometer consists of a measuring instrument, a probing rod and a cone tip. The penetrometer is pushed perpendicular into the soil and provides a method of assessing soil strength via relative density. The penetrometer is equipped with a 45-degree conical tip and a 15-lb slide hammer that free falls 20-inches. Dynamic cone penetrometer readings were collected during the hand

Cindy Alexopoulos, LCAM June 16, 2021 Page 2 of 8

auger borings to estimate the relative density and/or consistency of the surficial soils. The relative density designations are calculated based on soil type and the below graph.



Source: Humboldt Mfg. Co. Dynamic Cone Penetrometer Manual H-4202A

| SANDY                         | SOILS            | CLA                 | LAYEY & SILTY SOILS  |
|-------------------------------|------------------|---------------------|----------------------|
| 'N' Value<br>(Blows per foot) | Relative Density | 'N' Va<br>(Blows pe | Relative Consistency |
| 0 - 4                         | Very Loose       | 0                   | - 2 Very Soft        |
| 5 - 10                        | Loose            | 3 –                 | -4 Soft              |
| 11 - 30                       | Medium Dense     | 5 –                 | - 8 Firm             |
| 31 - 50                       | Dense            | 9 – 1               | 15 Stiff             |
| 50+                           | Very Dense       | 16 –                | - 30 Very Stiff      |
|                               |                  | 30-                 | )+ Hard              |

Cindy Alexopoulos, LCAM June 16, 2021 Page 3 of 8

Based on the cone penetrometer readings, the equivalent SPT 'N' values range from 1 to 13 blows per foot. These measurements indicate primarily very loose to medium dense relative densities for the shallow sandy soils and soft to stiff consistencies for the shallow clayey soils.

#### HAND AUGER BORINGS

The hand auger borings were completed using a stainless-steel bucket type auger that allows samples to be collected and visually classified at approximate 12-inch intervals. Dynamic hand cone penetrometer data was also gathered from the hand auger borings which were completed adjacent to the privacy wall.

Ten (10) hand auger borings were performed as part of the investigation to determine the soil types adjacent to, and below, the wall foundation(s). The soil descriptions are based on visual inspection of the hand auger samples, and the soil classifications were performed in general accordance with the Unified Soil Classification System (USCS). The hand auger borings were performed to a maximum depth of seven (7) feet and the groundwater table was only encountered in two (2) borings at approximately 6.5 feet below land surface (ft-bls). The hand auger boring logs are presented in **Attachment A**.

The HA borings encountered sand, clayey sand, and sandy clay. The layering of the soil types is significantly variable. The majority of the shallow sandy soil is very loose to loose, and the majority of the clayey soils is firm.

## Laboratory Analysis

Nine (9) soil samples from the soil borings were submitted for laboratory testing. The samples were collected and tested in accordance with the American Society for Testing and Materials (ASTM) specifications and processed to verify the Unified Soil Classification System (USCS) soil descriptions and properties. The complete analytical results are presented in **Attachment B**.

Eight (8) clayey soil samples were analyzed for liquid and plastic limits and moisture content, and one sample was analyzed for organic content. The soil samples were analyzed in accordance with ASTM D-1140 and ASTM 2974-07a.

The laboratory analysis of the clayey soil samples shows that the shallow clayey soils have the ability to shrink and swell in response to moisture changes. The organic analysis of one sample from HA-9 contained an organic content of 9.2%. Soils with organic contents greater than 5% are generally considered unsuitable as foundation bearing soils.

### **Test Pit Excavations**

Eight (8) test pit excavations were performed to evaluate the construction, adequacy and dimensions of the wall foundation(s). The results of test pit excavations generally show that the wall is supported on a

Cindy Alexopoulos, LCAM June 16, 2021 Page 4 of 8

shallow strip foundation, although the foundation construction is highly variable. While the variable foundations are not ideal, the variability is common given the length of the wall. The test pits show the foundation embedment ranged from 7 to 31 inches, the width ranged from 8 to 29 inches, and the thickness from 4 to 7.5 inches.

## CONCLUSIONS

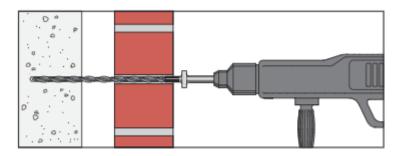
Based on the subsurface data and our visual inspection of the privacy wall, the wall has sustained settlement-related damage. The settlement related damage is due to the shallow soil conditions primarily, with a minor degree of damage being the result of variable wall support based on the foundation(s) construction, which is highly variable.

One significant issue is the prominent presence of very loose shallow sandy soil. This soil is susceptible to densification due to environmental factors such as traffic vibrations and water infiltration. The wide presence of very loose shallow soil below the wall indicates very little, if any, vibratory compaction was performed at the time the foundation(s) was poured and the wall was constructed. This condition can only be addressed by compacting the soils below the wall (remove and replace wall) or stabilizing the soils below and adjacent to the wall in situ using chemical grout injection.

The other significant factor in the wall stability is the presence of shallow clayey soils with the ability to shrink and swell in response to changes in moisture. The soils shrink during dry periods (settle) and expand during wet periods (swell); both conditions can move the wall and cause damage. This condition can be addressed by removal of the shallow clayey soil (remove and replace wall) or via the installation of pier supports.

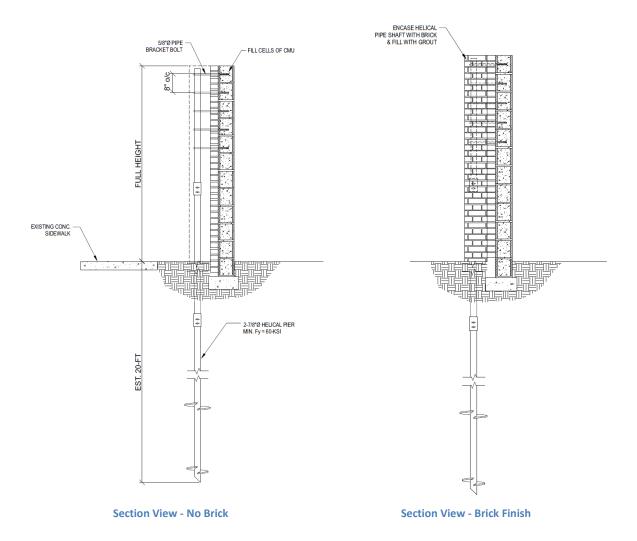
The result of this investigation is that the wall has damage because of movement, because of the way the wall foundation(s) was constructed, and normal aging of the building materials. The damages that are the result of aging building materials is normal and can be maintained via normal maintenance. The damages that are the result of soil conditions will require more than normal maintenance and should be expected to continue.

#### RECOMMENDATIONS


Based on the subsurface conditions and considering the age of the wall structure, it is recommended that the Board budget for replacement of the wall in the next 5-10 years. Considering the subsurface conditions that caused a majority of the damages, we would recommend the Board consider a more flexible style of wall system, often referred to as a Post-and-Panel wall type. It consists of a pre-cast concrete post that is set into a shallow caisson (cylindrical concrete shaft ~36" in diameter and 8 feet deep). The fence panels are also pre-cast with decorative concrete formed sides that can look quite decorative depending on the design. The panels are lowered into a concrete track on the post for placement. This type of wall, while rigid in construction and able to withstand hurricane force winds, the

Cindy Alexopoulos, LCAM June 16, 2021 Page 5 of 8

track connection allows for flexibility when it comes to localized differential movement. Additionally, the panels are rigid enough to withstand any localized heaving of the shallow soils in response to the clay.


In the interim, some temporary repairs can be made to allow the existing wall to safely operate while funds for a new wall are procured. Generally there are three (3) grades of damage that have been observed. The first is the least significant, and generally is comprised of cosmetic cracks. These can be filled with a flexible elastomeric filler and repainted.

The second are primarily where the brick fascia is detaching from the wall (likely to water intrusion). This can be repaired by installing a retrofit brick repair tie. A good quality and readily available type is the Simpson Heli-Tie<sup>TM</sup> Helical Wall Tie. The ties are simply drilled into the mortar bed of the existing brick and epoxied in-place to reconnect the brick to the wall structure.



The third type of damage is a little more severe where the walls are leaning out of plumb. Two options to repair this are available. The first requires at least 10-ft of land directly next to the wall, and is referred to as a butress. The second, can be installed in limited access areas. It is a customized repair method designed by FGE for your situation. See below.

Cindy Alexopoulos, LCAM June 16, 2021 Page 6 of 8



The Helical pile would be installed to a design depth, then mechanically fastened to the wall as shown above. Then can be encased in a brick finish for ascetics. This will provide the wall adequate lateral stability to be safely operated while funds for a new wall are procured.

Cindy Alexopoulos, LCAM June 16, 2021 Page 7 of 8



#### **Elevation View**

FGE will be providing additional detail regarding these repaires, but wanted to provide this information for the purposes of the Boards meeting.

We greatly appreciate the opportunity to support you with this effort and we are available to provide additional assistance regarding the recommendations presented herein upon request.

Sincerely,

#### FLORIDA GEOTECHNICAL ENGINEERING, INC.

Cindy Alexopoulos, LCAM June 16, 2021 Page 8 of 8 *Florida Geotechnical Engineering, Inc.* Privacy Wall Geotechnical Investigation

John R. Edwards, P.E. Senior Geotechnical Engineer FL License No. 46584

Attachments (2)

ATTACHMENT A

| 8    |       | P.O. Box 76006<br>Tampa, Florida 33675<br>Telephone: 813-248-<br>Fax: 813-248-4835 | 5<br>4720  |            |                        |                       |                             | BORING HA-<br>PAGE 1 OF                  |
|------|-------|------------------------------------------------------------------------------------|------------|------------|------------------------|-----------------------|-----------------------------|------------------------------------------|
|      | En    | ngineering, Inc.                                                                   |            |            |                        |                       |                             |                                          |
|      |       | Sentry Management                                                                  | PROJECT NA |            |                        |                       |                             |                                          |
|      |       | <b>NUMBER</b> <u>201452</u><br>23/21                                               |            |            |                        |                       |                             | L                                        |
| 1    |       |                                                                                    | GROUND ELE |            |                        |                       |                             |                                          |
|      |       |                                                                                    | SHGWT LEVE |            |                        |                       |                             |                                          |
|      |       | METHOD ASTM D-1452<br>OCATION See Figure 2 - Site Plan and Testing Locations       | GROUND     | WA         | ΤE                     | R LEV                 |                             | ncountered to 7 ft-bls                   |
|      |       |                                                                                    |            | _          |                        |                       | L                           | OGGED BY _D. Penkava                     |
| Ξ    | DEPTH | MATERIAL DESCRIPTION                                                               | GRAPHIC    | COG<br>CMT |                        | SAMPLE TYPE<br>NUMBER | BLOW<br>COUNTS<br>(N VALUE) | ● EQUIVALENT<br>SPT N VALUE ●<br>5 10 15 |
| 20.0 | 0.0   | SAND (SP) Very Loose, slightly silty, fine grained, brown                          |            | •          | Τ                      | T                     |                             |                                          |
| _    |       |                                                                                    |            |            | $\left \right\rangle$  | НА                    | 3                           |                                          |
| 5.0  | -     | CLAYEY SAND (SC) Loose, fine grained, brown to light brown                         |            |            | $\left  \right\rangle$ | НА                    | 10                          |                                          |
| 17.5 | 2.5   | SANDY CLAY (CL) Soft, brown to light brown to grey                                 |            |            | $\wedge$               | на                    | 4                           |                                          |
| -    | _     |                                                                                    |            |            | $\wedge$               | HA                    | 4                           |                                          |
| 5.0  | 5.0   | CLAYEY SAND (SC) Very Loose to Loose, fine grained, grey                           |            |            | $\wedge$               | на                    | 1                           |                                          |
| +    | _     |                                                                                    |            |            | $\wedge$               | НА                    | 1                           |                                          |
| -    | _     |                                                                                    |            |            | $\mathbb{N}$           | НА                    | 6                           |                                          |
|      |       | Bottom of borehole at 7.0 feet.                                                    | 1.11       |            |                        |                       |                             |                                          |

| 4              |     | P.O. Box 76006<br>Tampa, Florida 33675<br>Telephone: 813-248-<br>Fax: 813-248-4835             | ;<br>4720       |      |              |                       |                             | BORING HA-2<br>PAGE 1 OF 1                     |
|----------------|-----|------------------------------------------------------------------------------------------------|-----------------|------|--------------|-----------------------|-----------------------------|------------------------------------------------|
|                |     | prida Geotechnical Fax: 813-248-4835<br>Ingineering, Inc.                                      |                 |      |              |                       |                             |                                                |
| CLI            | ENT | Sentry Management                                                                              | PROJECT NAM     | 1E _ | Hu           | ntingt                | on Privacy W                | all                                            |
| 1              |     | NUMBER _201452                                                                                 |                 |      |              |                       |                             | L                                              |
|                |     | 23/21                                                                                          | GROUND ELEV     |      |              |                       |                             |                                                |
|                |     | CONTRACTOR FGE                                                                                 |                 |      |              |                       |                             |                                                |
|                |     | METHOD ASTM D-1452<br>OCATION See Figure 2 - Site Plan and Testing Locations                   |                 | NAT  | ER           | LEVE                  |                             | ncountered to 7 ft-bls                         |
|                |     |                                                                                                |                 | 1    |              |                       | L                           | OGGED BY _D. Penkava                           |
| ELEVATION (ft) |     | MATERIAL DESCRIPTION                                                                           | GRAPHIC<br>I OG | GWT  |              | SAMPLE IYPE<br>NUMBER | BLOW<br>COUNTS<br>(N VALUE) | EQUIVALENT     SPT N VALUE     5     10     15 |
| 20.0           | 0.0 | SAND (SP) Very Loose to Loose, slightly silty, fine grained, bro                               | own             |      |              |                       |                             |                                                |
|                |     |                                                                                                |                 |      | $\wedge$     | HA                    | 4                           | •                                              |
|                |     | Minor rocks from 0 to 2 ft-bls                                                                 |                 |      | $\wedge$     | HA                    | 7                           |                                                |
|                | 2.5 | SANDY CLAY (CL) Soft, light brown<br>SAND (SP) Very Loose, slightly silty, fine grained, brown |                 |      | Λ            | НА                    | 4                           |                                                |
|                | -   | CLAYEY SAND (SC) Loose, fine grained, brown to light brown                                     |                 |      | / \          |                       |                             |                                                |
|                |     |                                                                                                |                 |      | $\wedge$     | HA                    | 8                           |                                                |
|                | 5.0 |                                                                                                |                 |      | $\mathbb{A}$ | НА                    | 10                          |                                                |
|                |     | SANDY CLAY (CL) Medium Stiff, grey-green to light brown                                        |                 |      | $\mathbb{A}$ | НА                    | 6                           |                                                |
| -              |     |                                                                                                |                 | /    |              | НА                    | 7                           |                                                |
|                |     | Bottom of borehole at 7.0 feet.                                                                | Sum.            |      | _            |                       |                             |                                                |

| Ŷ                   | Ş    | P.O. Box 76006<br>Tampa, Florida 33675<br>Telephone: 813-248-<br>Fax: 813-248-4835 | 5<br>4720  |                |          |                       |                             | BORING HA-<br>PAGE 1 OF                  |
|---------------------|------|------------------------------------------------------------------------------------|------------|----------------|----------|-----------------------|-----------------------------|------------------------------------------|
|                     | En   | ngineering, Inc.                                                                   | 4720       |                |          |                       |                             |                                          |
| 1                   |      | Sentry Management                                                                  | PROJECT    | NAME           | Е_Н      | lunting               | ton Privacy W               | /all                                     |
|                     |      | NUMBER _201452                                                                     |            |                |          |                       | fety Harbor, F              | Ľ                                        |
|                     | E_3/ |                                                                                    | GROUND E   | LEVA           | TIO      | N _20                 | ft                          |                                          |
|                     |      |                                                                                    |            |                |          |                       |                             |                                          |
|                     |      | METHOD ASTM D-1452                                                                 | GROU       | ND W           | ATE      | R LEV                 | EL Not E                    | ncountered to 7 ft-bls                   |
| BOH                 |      | OCATION See Figure 2 - Site Plan and Testing Locations                             |            |                |          |                       | I                           | LOGGED BY D. Penkava                     |
| b ELEVATION<br>(ft) | 0.0  | MATERIAL DESCRIPTION                                                               |            | GRAPHIC<br>LOG | GWT      | SAMPLE TYPE<br>NUMBER | BLOW<br>COUNTS<br>(N VALUE) | ● EQUIVALENT<br>SPT N VALUE ●<br>5 10 15 |
| 20.0                |      | SAND (SP) Very Loose, slightly silty, fine grained, brown                          |            |                |          |                       |                             |                                          |
|                     |      | Minor rocks and roots from 0 to 1 ft-bls                                           |            |                |          | НА                    | 3                           |                                          |
|                     |      | CLAYEY SAND (SC) Loose, fine grained, brown to light brown                         |            |                | /        | НА                    | 9                           |                                          |
| 17.5                | 2.5  | SAND (SP) Medium Dense, slightly silty, fine grained, light brov                   | wn         |                | /        | НА                    | 13                          |                                          |
| _                   |      | SANDY CLAY (CL) Soft ot Medium Stiff, dark grey to pale green brown to orange      | n to light |                | $\wedge$ | НА                    | 3                           |                                          |
| 5.0                 | 5.0  |                                                                                    |            |                | $\wedge$ | НА                    | 6                           |                                          |
| -                   | _    |                                                                                    |            |                | $\wedge$ | НА                    | 6                           |                                          |
|                     | _    |                                                                                    |            |                | $\wedge$ | HA                    | 5                           |                                          |
| 17.5                |      | Bottom of borehole at 7.0 feet.                                                    |            |                |          |                       |                             |                                          |

| 4                   | Ş   | P.O. Box 76006<br>Tampa, Florida 33674<br>Telephone: 813-248-<br>Fax: 813-248-4835 | 5<br>-4720 |                |            |                       |                             | BORING HA-4<br>PAGE 1 OF 1                     |
|---------------------|-----|------------------------------------------------------------------------------------|------------|----------------|------------|-----------------------|-----------------------------|------------------------------------------------|
|                     |     | orida Geotechnical Fax: 813-248-4835<br>Ingineering, Inc.                          |            |                |            |                       |                             |                                                |
|                     |     | Sentry Management                                                                  | PROJECT I  | NAME           | E <u>H</u> | untingt               | on Privacy W                | all                                            |
|                     |     | NUMBER _201452                                                                     |            |                |            |                       | ety Harbor, Fl              | -                                              |
|                     |     | 23/21                                                                              | GROUND E   | LEVA           |            | 201                   | t                           |                                                |
|                     |     | CONTRACTOR FGE                                                                     |            |                |            |                       |                             |                                                |
|                     |     | METHOD ASTM D-1452                                                                 | GROUI      | ND W           | ATE        | R LEVI                |                             | ncountered to 7 ft-bls                         |
| BUR                 |     | OCATION See Figure 2 - Site Plan and Testing Locations                             |            |                |            |                       | L                           | OGGED BY D. Penkava                            |
| S ELEVATION<br>(ft) |     |                                                                                    |            | GRAPHIC<br>LOG | GWT        | SAMPLE TYPE<br>NUMBER | BLOW<br>COUNTS<br>(N VALUE) | EQUIVALENT     SPT N VALUE     5     10     15 |
|                     |     | SAND (SP) Very Loose, slightly silty, fine grained, brown                          |            |                | /          | НА                    | 2                           |                                                |
|                     |     | CLAYEY SAND (SC) Very Loose to Loose, slightly silty, fine g<br>brown              | rained,    |                |            | НА                    | 6                           |                                                |
| -17.5-              | 2.5 | -                                                                                  |            |                | Λ          | НА                    | 2                           |                                                |
|                     |     |                                                                                    |            |                | $\wedge$   | НА                    | 2                           |                                                |
| 15.0-               | 5.0 | SANDY CLAY (CL) Soft to Medium Stiff, light brown to brown to orange               | o grey to  |                | $\wedge$   | НА                    | 5                           |                                                |
|                     | _   |                                                                                    |            |                | $\wedge$   | на                    | 4                           |                                                |
| -                   | _   |                                                                                    |            |                | $\wedge$   | НА                    | 5                           |                                                |
|                     |     | Bottom of borehole at 7.0 feet.                                                    |            | 111            | 11         |                       |                             |                                                |

| 8         |                     | P.O. Box 76006<br>Tampa, Florida 3367<br>Telephone: 813-248-<br>Fax: 813-248-4835 | 5<br>4720      |          |                       |                             | BORING HA-5<br>PAGE 1 OF                 |
|-----------|---------------------|-----------------------------------------------------------------------------------|----------------|----------|-----------------------|-----------------------------|------------------------------------------|
| CLIE      | ENT _               | Sentry Management                                                                 | PROJECT NAME   | EH       | untingt               | on Privacy W                | all                                      |
| PRC       | JECT                | NUMBER 201452                                                                     | PROJECT LOCA   |          |                       |                             |                                          |
| DAT       | E _3/               | 23/21                                                                             | GROUND ELEVA   |          |                       |                             |                                          |
| DRIL      | LING.               | CONTRACTOR FGE                                                                    | SHGWT LEVEL    |          |                       |                             |                                          |
| DRIL      | LING                | METHOD ASTM D-1452                                                                |                |          | RLEV                  | EL Not Er                   | ncountered to 7 ft-bls                   |
| BOR       | ing l               | OCATION See Figure 2 - Site Plan and Testing Locations                            |                |          |                       | L                           | OGGED BY D. Penkava                      |
| ELEVATION | 0.0<br>(ft)<br>(ft) |                                                                                   | GRAPHIC<br>LOG | GWT      | SAMPLE TYPE<br>NUMBER | BLOW<br>COUNTS<br>(N VALUE) | ● EQUIVALENT<br>SPT N VALUE ●<br>5 10 15 |
|           |                     | SAND (SP) Very Loose, slightly silty, fine grained, brown                         |                |          | HA                    | 1                           |                                          |
|           |                     | CLAYEY SAND (SC) Loose to Medium Dense, fine grained, b<br>light brown            | rown to        |          | НА                    | 5                           |                                          |
| 17.5      | 2.5                 | -                                                                                 |                | /        | НА                    | 9                           |                                          |
| -         |                     |                                                                                   |                | $\wedge$ | НА                    | 8                           |                                          |
| 15.0      | -                   |                                                                                   |                | $\wedge$ | HA                    | 12                          |                                          |
|           | _                   | SAND (SP) Loos, slightly silty, fine grained, brown                               |                | $\wedge$ | НА                    | 6                           |                                          |
| -         | _                   | SANDY CLAY (CL) Medium Stiff, grey                                                |                | $\wedge$ | на                    | 6                           |                                          |
|           |                     | Bottom of borehole at 7.0 feet.                                                   |                |          |                       |                             |                                          |

| e e                 |       | P.O. Box 76006<br>Tampa, Florida 33675<br>Telephone: 813-248-<br>Fax: 813-248-4835 | 5<br>4720  |      |              |                       |                             |           | BORING HA-6<br>PAGE 1 OF 1               |
|---------------------|-------|------------------------------------------------------------------------------------|------------|------|--------------|-----------------------|-----------------------------|-----------|------------------------------------------|
| CLIE                | ENT . | Sentry Management                                                                  | PROJECT NA | ME _ | Hu           | Intingt               | on Privacy W                | all       |                                          |
| PRC                 | JEC   | NUMBER _201452                                                                     | PROJECT LO | CATI | ON           | Safe                  | ety Harbor, F               | L         |                                          |
| DAT                 | E _3/ | 23/21                                                                              | GROUND ELE | VATI | ON           | 201                   | ït                          |           |                                          |
| DRIL                | LING  | CONTRACTOR FGE                                                                     | SHGWT LEVE | L    |              |                       |                             |           |                                          |
|                     |       | METHOD ASTM D-1452                                                                 |            |      |              |                       | EL Not E                    | ncountere | ed to 7 ft-bis                           |
| BOR                 | ING I | OCATION See Figure 2 - Site Plan and Testing Locations                             |            |      |              |                       | L                           | OGGED     | BY _D. Penkava                           |
| S ELEVATION<br>(ft) |       | MATERIAL DESCRIPTION                                                               | GRAPHIC    | GWT  |              | SAMPLE TYPE<br>NUMBER | BLOW<br>COUNTS<br>(N VALUE) |           | ● EQUIVALENT<br>SPT N VALUE ●<br>5 10 15 |
|                     |       | CLAYEY SAND (SC) Loose, light brown                                                |            |      | $\wedge$     | НА                    | 9                           |           |                                          |
|                     |       | SANDY CLAY (CL) Stiff, light brown to grey                                         |            |      | $\wedge$     | НА                    | 13                          |           |                                          |
| -17.5-              | 2.5   |                                                                                    |            |      | $\wedge$     | HA                    | 11                          |           |                                          |
| -17.5-              |       | CLAYEY SAND (SC) Medium Dense, light brown to grey to ora                          | nge        |      | $\wedge$     | HA                    | 13                          |           |                                          |
| -15.0               | 5.0   | -                                                                                  |            |      | $\wedge$     | HA                    | 13                          |           |                                          |
|                     |       |                                                                                    |            |      | $\wedge$     | НА                    | 13                          |           |                                          |
| _                   | _     | SAND (SP) Medium dense, slightly silty, fine grained, brown                        |            |      | $\mathbb{A}$ | HA                    | 12                          |           |                                          |
|                     |       | Bottom of borehole at 7.0 feet.                                                    | b          |      |              | I                     |                             |           | i I                                      |

| \$                  | Fic    | P.O. Box 76006<br>Tampa, Florida 3367<br>Telephone: 813-248<br>Fax: 813-248-4835                                  | 5<br>-4720 |     |          |                       |                             | BORING HA-7<br>PAGE 1 OF                 |
|---------------------|--------|-------------------------------------------------------------------------------------------------------------------|------------|-----|----------|-----------------------|-----------------------------|------------------------------------------|
|                     |        | Sentry Management                                                                                                 | PROJECT N  |     | н        | untinate              | on Privacy W                | all                                      |
|                     |        | NUMBER _201452                                                                                                    | PROJECT LO |     |          |                       |                             |                                          |
| 1                   | E _3/2 |                                                                                                                   | GROUND EL  |     |          |                       |                             |                                          |
| DRIL                | LING   | CONTRACTOR FGE                                                                                                    |            |     |          |                       |                             |                                          |
| DRIL                | LING   | METHOD ASTM D-1452                                                                                                |            |     |          |                       |                             | ncountered to 7 ft-bls                   |
| BOR                 | ING L  | OCATION See Figure 2 - Site Plan and Testing Locations                                                            |            |     |          |                       | L                           | OGGED BY D. Penkava                      |
| S ELEVATION<br>(ft) |        | MATERIAL DESCRIPTION                                                                                              | GRAPHIC    |     | GWT      | SAMPLE TYPE<br>NUMBER | BLOW<br>COUNTS<br>(N VALUE) | ● EQUIVALENT<br>SPT N VALUE ●<br>5 10 15 |
|                     |        | SAND (SP) Loose, slightly silty, fine grained, brown                                                              |            |     | /        | НА                    | 5                           |                                          |
|                     |        | CLAYEY SAND (SC) Loose, brown to grey to red<br>Minor rocks from 1 to 2 ft-bls                                    |            |     | $\wedge$ | НА                    | 10                          |                                          |
| 17.5                | 2.5    | SAND (SP) Lose, slightly silty, fine grained, brown                                                               |            |     | $\wedge$ | НА                    | 8                           |                                          |
|                     | _      |                                                                                                                   |            | *** | $\wedge$ | HA                    | 5                           |                                          |
|                     | _      | CLAYEY SAND (SC) Loose, fine grained, light brown<br>SANDY CLAY (CL) Medium Stiff, light brown to brown to grey t | o red      |     | $\wedge$ | НА                    | 5                           |                                          |
| -                   | _      |                                                                                                                   |            |     | $\wedge$ | НА                    | 6                           |                                          |
|                     |        |                                                                                                                   |            |     | $\wedge$ | НА                    | 6                           |                                          |
|                     |        | Bottom of borehole at 7.0 feet.                                                                                   |            |     |          |                       |                             |                                          |

| ¢                   | Ş                 | P.O. Box 76006<br>Tampa, Florida 33675<br>Telephone: 813-248-4<br>Fax: 813-248-4835 | 720                   |                  |                       |                             | BORING HA-                               |
|---------------------|-------------------|-------------------------------------------------------------------------------------|-----------------------|------------------|-----------------------|-----------------------------|------------------------------------------|
|                     |                   | prida Geotechnical Fax: 813-248-4835<br>gineering, Inc.                             | 720                   |                  |                       |                             |                                          |
|                     | ENT _             | Sentry Management                                                                   | PROJECT NAME _        | Hu               | ntingto               | on Privacy W                | /all                                     |
|                     |                   | NUMBER _ 201452                                                                     | PROJECT LOCATI        | ION              | Safe                  | ety Harbor, F               | Ľ                                        |
| 1                   | 8                 |                                                                                     | ROUND ELEVATI         | ION              | _20 f                 | t                           |                                          |
|                     |                   | CONTRACTOR FGE                                                                      |                       |                  |                       |                             |                                          |
|                     |                   | METHOD ASTM D-1452                                                                  | GROUND WAT            | TER              |                       | L Not E                     | ncountered to 7 ft-bls                   |
| BOR                 | ING L             | OCATION See Figure 2 - Site Plan and Testing Locations                              |                       |                  |                       | L                           | OGGED BY D. Penkava                      |
| B ELEVATION<br>(ft) | o<br>(ft)<br>(ft) | MATERIAL DESCRIPTION                                                                | GRAPHIC<br>LOG<br>GWT |                  | SAMPLE TYPE<br>NUMBER | BLOW<br>COUNTS<br>(N VALUE) | ● EQUIVALENT<br>SPT N VALUE ●<br>5 10 15 |
|                     |                   | SAND (SP) Loose, slightly silty, fine grained, brown                                |                       | $\left  \right $ | НА                    | 6                           | •                                        |
|                     |                   | SANDY CLAY (CL) Soft to Medium Stiff, grey to red to green to<br>brown              | ight                  | $\wedge$         | HA                    | 6                           |                                          |
| 17.5-               | 2.5               | _                                                                                   |                       | $\wedge$         | на                    | 6                           |                                          |
| +                   | _                 |                                                                                     |                       | $\wedge$         | HA                    | 8                           |                                          |
| 5.0                 | 5.0               |                                                                                     |                       | $\wedge$         | НА                    | 4                           |                                          |
| -                   | -                 |                                                                                     |                       | $\wedge$         | НА                    | 5                           |                                          |
| 17.5                | _                 |                                                                                     |                       | $\mathbb{A}$     | HA                    | 5                           |                                          |
|                     |                   | Bottom of borehole at 7.0 feet.                                                     |                       |                  |                       |                             |                                          |

| 4                   |       | P.O. Box 76006<br>Tampa, Florida 33679<br>Telephone: 813-248-<br>Fax: 813-248-4835                                         | 5<br>4720             |      |          |                       |                             | BORING HA-S                              |
|---------------------|-------|----------------------------------------------------------------------------------------------------------------------------|-----------------------|------|----------|-----------------------|-----------------------------|------------------------------------------|
| СП                  | ENT   | Sentry Management                                                                                                          | PROJECT NAM           | NE . | Н        | untingt               | on Privacy W                | all                                      |
| PRO                 | OJEC  | TNUMBER _201452                                                                                                            | PROJECT LOC           | CAT  | 101      | Saf                   | ety Harbor, Fl              | -                                        |
| DAT                 | E _3  | 23/21                                                                                                                      |                       | /AT  | 101      | N _201                | ft                          |                                          |
| DRI                 | LLINC | CONTRACTOR FGE                                                                                                             | SHGWT LEVEL           | -    |          |                       |                             |                                          |
|                     |       | METHOD ASTM D-1452                                                                                                         | $\overline{2}$ ground | WA   | TE       | R LEV                 | EL _6.50 ft / E             | Elev 13.50 ft                            |
| BOF                 | RING  | OCATION See Figure 2 - Site Plan and Testing Locations                                                                     |                       |      |          |                       | L                           | OGGED BY D. Penkava                      |
| S ELEVATION<br>(ft) |       | MATERIAL DESCRIPTION                                                                                                       | GRAPHIC               | GMT  |          | SAMPLE TYPE<br>NUMBER | BLOW<br>COUNTS<br>(N VALUE) | ● EQUIVALENT<br>SPT N VALUE ●<br>5 10 15 |
|                     |       | SAND (SP) Very Loose to Medium Dense, slightly silty, fine gr<br>brown to light brown                                      | ained,                |      | /        | НА                    | 8                           |                                          |
|                     |       |                                                                                                                            |                       |      | $\wedge$ | НА                    | 4                           |                                          |
| 17.5-               | 2.5   |                                                                                                                            |                       |      | $\wedge$ | на                    | 1                           |                                          |
| _                   |       |                                                                                                                            |                       |      | $\wedge$ | НА                    | 9                           |                                          |
| 15.0-               | 5.0   | _                                                                                                                          |                       | •    | $\wedge$ | HA                    | 11                          |                                          |
| _                   |       | Organics                                                                                                                   |                       |      | $\wedge$ | НА                    | 8                           |                                          |
|                     |       | CLAYEY SAND (SC) Very Loose, fine grained, brown to light bo<br>grey<br>SANDY CLAY (CL) Soft, brown to light brown to grey | prwn to               | Ā    | $\wedge$ | НА                    | 3                           |                                          |
|                     |       | Bottom of borehole at 7.0 feet.                                                                                            |                       |      | V        |                       |                             |                                          |

| 8                   |                    | P.O. Box 76006<br>Tampa, Florida 33675<br>Telephone: 813-248-4<br>Fax: 813-248-4835                      | 1720                           |     |                         |                       |                             | BORING HA-10<br>PAGE 1 OF                |
|---------------------|--------------------|----------------------------------------------------------------------------------------------------------|--------------------------------|-----|-------------------------|-----------------------|-----------------------------|------------------------------------------|
| CLIE                | INT _              | Sentry Management                                                                                        | PROJECT NAN                    |     | Hu                      | ntingto               | on Privacy W                | all                                      |
| PRO                 | JECT               | NUMBER _ 201452                                                                                          | PROJECT LOC                    | ATI | ON                      | Safe                  | ety Harbor, Fl              |                                          |
| DATE                | E_3/2              |                                                                                                          | GROUND ELEV                    |     |                         |                       |                             |                                          |
| DRIL                | LING               | CONTRACTOR FGE                                                                                           | SHGWT LEVEL                    |     |                         |                       |                             |                                          |
| DRIL                | LING               | METHOD ASTM D-1452                                                                                       | ${\underline{ abla}}$ ground ( | NAT | ER                      |                       | EL_6.50 ft / E              | Elev 13.50 ft                            |
| BOR                 | ING L              | OCATION See Figure 2 - Site Plan and Testing Locations                                                   |                                |     |                         |                       | L                           | OGGED BY D. Penkava                      |
| S ELEVATION<br>(ft) | o<br>DEPTH<br>(ft) | MATERIAL DESCRIPTION                                                                                     | GRAPHIC<br>LOG                 | GWT |                         | SAMPLE TYPE<br>NUMBER | BLOW<br>COUNTS<br>(N VALUE) | ● EQUIVALENT<br>SPT N VALUE ●<br>5 10 15 |
|                     |                    | SAND (SP) Very Loose to Loose, slightly silty, fine grained, bro                                         | wn                             |     | $\wedge$                | НА                    | 3                           |                                          |
|                     |                    |                                                                                                          |                                |     | $\wedge$                | HA                    | 7                           |                                          |
| -17.5               | 2.5                | CLAYEY SAND (SC) Medium Dense, fine grained, brown                                                       |                                |     | $\wedge$                | HA                    | 11                          |                                          |
|                     |                    | SANDY CLAY (CL) Medium Stiff, brown to grey to red<br>CLAYEY SAND (SC) Loose, fine grained, brown to red |                                |     | $\wedge$                | на                    | 8                           |                                          |
|                     | 5.0                | SANDY CLAY (CL) Medium Stiff, brown to grey to red                                                       |                                |     | $\wedge$                | на                    | 6                           |                                          |
| 17.5                | _                  | CLAYEY SAND (SC) Very Loose, fine grained, brown to grey to green                                        | pale                           |     | $\overline{\mathbf{A}}$ | НА                    | 3                           |                                          |
| -                   | _                  |                                                                                                          |                                | ⊻   | $\mathbb{N}$            | на                    | 3                           |                                          |
|                     |                    | Bottom of borehole at 7.0 feet.                                                                          | 1.1.1.1                        |     | _                       |                       |                             |                                          |

ATTACHMENT B

| Project No.:201452ASTM Standard:D 1140Project Name:Inviniegon H.O.A.Test Method:Moisture - A / Passing #200 SieveProject Adress:Subdivision Location 13,Test Method:Moisture - A / Passing #200 SieveProject Adress:Subdivision Location 13,Subdivision Location 13,HA-Si (1-2)Protect Adress:Subdivision Location 14,(1) HA-Si (1-2)(1) HA-Si (1-2)Protect Adress:Township 28, Range 16, Safety Harbor, FL(1) HA-Si (1-2)(1) HA-Si (1-2)Date Tested:Township 28, Range 16, Safety Harbor, FL(1) HA-Si (1-2)(1) HA-Si (1-2)Date Tested:4/5/2021(1) HA-Si (1-2)(1) HA-Si (1-2)Date Tested:4/5/2021(1) HA-Si (1-2)(1) HA-Si (1-2)Date Tested:4/5/2021(1) HA-Si (1-2)(1) HA-Si (1-2)Date Tested:(1) HA-Si (1-2)(1) HA-Si (1-2)(1) HA-Si (1-2)Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Florid               | Florida Geotechnical Engineering, Inc. | ineering, Inc.                         |                       |                              |                            | F                                      | Tampa, Florida 33675<br>Tel: (813) 248-4720<br>Fax: (813) 248-4835<br>Fax: (813) 248-4835<br>www.flgeotech.com |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------|----------------------------------------|-----------------------|------------------------------|----------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Test Method:Molisture -A PassinSublivision located in Section 33,<br>Township 28, Range 16 E, Safety Harbor, FL<br>Huntington H.O.A.Test Method:Molisture -A Passin<br>Sample Location: (1) HA-8; (4-5')<br>(2) HA-8; (1-2')<br>(3) HA-6; (4-5')<br>(4) HA-1; (3')4/5/2021<br>$4/5/2021D. PenkavaTest Method:(3) HA-6; (4-5')(3) HA-6; (4-5')(4) HA-1; (3')Molisture Content Va/5/2021D. PenkavaMolisture Content Va/5/2021D. PenkavaWc + Swb)NMolisture Content Vb)Molisture Vb)Molisture Ab)Molisture ContentMolistureb)Molisture Vb)Molisture Vb)Molisture Ab)Molisture ContentMolisture ContentMolisture Ab)Molisture Ab)Molisture ContentMolisture ContentMolisture Ab)Molisture Ab)Molisture ContentMolisture ContentMolisture Ab)Molisture Ab)Molisture Ab)Molisture ContentMolisture ContentMolisture Ab)Molisture Ab)Molisture Ab)Molisture ContentMolisture ContentMolisture Ab)Molisture Ab)Molisture $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Project No.:         | 201452                                 |                                        |                       | AS                           | STM Standard:              | D 1140                                 |                                                                                                                |
| Subdivision located in Section 33,<br>Township 28 S, Range 16 E, Safety Harbor, FL<br>Township 28 S, Range 16 E, Safety Harbor, FL<br>Township 28 S, Range 16 E, Safety Harbor, FL<br>To Hars, (1-2')<br>(3) HA-E, (2')<br>(4) HA | oject Name:          | Huntington H.O.A.                      |                                        |                       | Te                           | est Method:                | Moisture - A / Passi                   | ing #200 Sieve                                                                                                 |
| Township 28 S, Range 16 E, Safety Harbor, FLHurtington H.O.A.Hurtington H.O.A.Hurtington H.O.A.Hurtington H.O.A.Hurtington H.O.A.A/5/2021G) HaA: (12')G) Heat, (12')G) PenkavaWc+5wWcWcWcWcNoisture ContentMoisture(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | oject Address:       |                                        | l in Section 33,                       |                       | San                          |                            | (1) HA-8: (4-5')                       | )                                                                                                              |
| Huntington H.O.A. $4/5/2021$ $4/5/2021$ (3) HA-1; (3)D. PenkavaNoisture Content/Minus #200 Sieve AnalysisNoisture Content/Minus #200 Sieve AnalysisNoisture Content/Minus #200 Sieve AnalysisNoisture Content/Minus #200 Sieve AnalysisNoisture Content/Minus #200 Sieve AnalysisNoistureMoistureContentW <sub>c</sub> + S <sub>R</sub> $(g)$ $179.95$ $138.98$ $4.58$ $84.5\%$ $104.31$ $(g)$ $170.36$ $138.73$ $4.56$ $84.5\%$ $104.37$ $(g)$ $117.18$ $138.73$ $4.56$ $80.0\%$ $24.9\%$ $66.58$ $(g)$ $117.18$ $138.73$ $4.56$ $80.0\%$ $24.9\%$ $66.58$ $(g)$ $169.40$ $145.13$ $4.56$ $80.0\%$ $24.9\%$ $104.87$ $(g)$ $169.40$ $145.13$ $4.56$ $85.3\%$ $10.487$ $86.56$ $(g)$ $169.40$ $145.13$ $4.56$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                                        | ige 16 E, Safety Harb                  | or, FL                |                              |                            | (2) HA-8: (1-2')                       |                                                                                                                |
| 4/5/2021       (4) HA-1; (3)         Penkara       (4) HA-1; (3)         D. Penkara         Moisture Content/Minus #200 Sieve Analysis         Moisture Content/Minus #200 Sieve Analysis         wc+5w       wc       Solids content       wc       5, 9, 4, 5, 8         wc       wc       solids content       moisture       wc       5, 9, 4, 5, 8         a       179.95       138.38       4, 5, 8       80.0%       24.9%       16, 9       9, 10, 31         a       172.18       138.73       4, 5, 5       84.5%       18.4%       104.87         a       169.40       145.13       4, 5, 5       85.3%       17.3%       104.87         a       169.40       145.13       4, 5, 6       85.3%       104.87       85.3%       104.87         a       169.40       145.13       4, 5, 6       85.3%       104.87       104.87         a       5       456       85.3%       104.87       104.87         a       5       85.3%       107.87       104.87       104.87         a       5       66.65       85.3%       104.87       104.87       104.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ient:                | Huntington H.O.A.                      |                                        |                       |                              |                            | (3) HA-6. (A-5')                       |                                                                                                                |
| D. Penkava       O. Penkava       Moisture Content/Minus #200 Sieve Analysis       Wc+5w     Wc     Solids Content     Moisture     Wc     Solids Content     Wc       e     Wc     Wc     Solids Content     Moisture     Wc     Solids Content     Wc       e     Wc     (e)     (g)     (g)     (g)     (g)     (g)     (g)       175.62     138.73     4.55     84.5%     18.4%     104.31       172.18     138.73     4.56     85.3%     17.3%     66.58       175.62     149.93     4.56     85.3%     17.3%     104.87       169.40     145.13     4.56     85.3%     17.3%     104.87       i69.40     145.13     4.56     85.3%     17.3%     104.87       i69.40     145.13     4.56     85.3%     17.3%     104.87       i69.40     145.13     4.56     85.3%     104.87     104.87       i69.40     145.13     4.56     85.3%     104.87     104.87       i69.40     146.13     4.56     85.3%     104.87     104.87       i69.40     145.13     4.56     85.3%     104.87     104.87       i69.40     149.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ate Tested:          | 4/5/2021                               |                                        |                       |                              |                            | (2) HA-1·(3')                          |                                                                                                                |
| Moisture Content Moisture Moisture Moisture Wc + Sn<br>(g)Moisture Content Wc + Sn<br>(g)Wc + Sn<br>(g)Wc + Sn<br>(g)Wc<br>(g)Moisture Content Content Wc + Sn<br>(g)Moisture Content Wc + Sn<br>(g)179.95138.984.5880.05%30.5%66.50176.62149.934.5584.5%18.4%104.31172.18138.734.5680.0%24.9%66.58176.62149.934.5685.3%17.3%104.87172.18138.734.5685.3%17.3%104.87169.40145.134.5685.3%17.3%104.87169.40145.134.5685.3%17.3%104.87169.40145.134.5685.3%17.3%104.87169.40145.134.5685.3%17.3%104.87169.40145.134.5685.3%17.3%104.87169.40145.134.5685.3%17.3%104.87169.40145.134.5685.3%17.3%104.87169.40145.134.5685.3%17.3%104.87169.40145.134.5685.3%17.3%104.87169.40145.134.5685.3%17.3%104.87169.40169.40145.134.5685.3%16.4%169.40169.40145.134.5685.3%16.4%169.40169.40145.134.5685.3%16.4%169.41<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | st By:<br>iecked By: | D. Penkava                             |                                        |                       |                              |                            |                                        |                                                                                                                |
| Wc+Sw<br>(a)Wc + Sp<br>(a)Wc<br>(a)Moisture<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 2                                      | <b>Moisture Co</b>                     | ntent/Mi              | inus #200 Sie                | ve Analy                   | /sis                                   |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sample               | Wc + Sw<br>(9)                         | W <sub>c</sub> + S <sub>D</sub><br>(g) | W <sub>c</sub><br>(g) | Solids Content (%)           | Moisture<br>Content<br>(%) | W <sub>c</sub> + S <sub>R</sub><br>(g) | <#200<br>(%)                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                    | 179.95                                 | 138.98                                 | 4.58                  | 76.6%                        | 30.5%                      | 66.50                                  | 53.9%                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                    | 176.62                                 | 149.93                                 | 4.55                  | 84.5%                        | 18.4%                      | 104.31                                 | 31.4%                                                                                                          |
| 169:40145.134.5685.3%17.3%104.87104.87104.87104.87104.87104.87104.87104.87104.87104.87104.87104.87104.87104.87104.87104.87104.87104.87104.87104.87104.87104.87104.87104.87104.87104.87104.81104.81104.81104.87104.87104.87104.81104.91104.81104.81104.81104.97104.91104.91104.81104.81104.81105.060104.91104.91104.85104.85104.85105.060104.95104.95104.95104.85104.85105.060104.95104.95104.95104.95104.95105.060104.95104.95104.95104.95104.95105.060104.95104.95104.95104.95104.95105.060104.95104.95104.95104.95104.15105.060104.95104.95104.95104.95104.15105.060104.95104.95104.95104.95104.15105.060104.95104.95104.95104.15104.15105.060104.95104.95104.95104.15104.15105.060104.95104.95104.95104.15104.15105.060104.95104.95104.95104.15104.15105.060104.95104.95 <td>£</td> <td>172.18</td> <td>138.73</td> <td>4.58</td> <td>80.0%</td> <td>24.9%</td> <td>66.58</td> <td>53.8%</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | £                    | 172.18                                 | 138.73                                 | 4.58                  | 80.0%                        | 24.9%                      | 66.58                                  | 53.8%                                                                                                          |
| Soil Description       Formulas         CL, brown, gray and red.       We - Weight of Container       Solids Content (%) =         CL, pale green, gray and light brown.       Sw - Weight of Wet Sample       Moisture Content (%) =         SC, light brown, gray and orange.       Solids Content (%) =       Moisture Content (%) =         CL, brown, light brown and gray.       Solids Content (%) =       Moisture Content (%) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                    | 169.40                                 | 145.13                                 | 4.56                  | 85.3%                        | 17.3%                      | 104.87                                 | 28.6%                                                                                                          |
| Soil Description       Soil Description         CL, brown, gray and red.       Wc - weight of Container       Solids Content (%) =         CL, pale green, gray and light brown.       Sw - weight of wet Sample       Moisture Content (%) =         SC, light brown, light brown and gray.       Sp - Weight of Dry Sample       Moisture Content (%) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                                        |                                        |                       |                              |                            | selum                                  |                                                                                                                |
| CL, brown, gray and red.       Wc - Weight of Container       Solids Content (%) =         CL, pale green, gray and light brown.       S_w - Weight of Wet Sample       Moisture Content (%) =         SC, light brown, gray and orange.       S_b - Weight of Dry Sample       Moisture Content (%) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sample               |                                        | Soil Description                       |                       |                              |                            |                                        |                                                                                                                |
| CL, pale green, gray and light brown.     S <sub>w</sub> - weight of wet Sample       SC, light brown, gray and orange.     S <sub>b</sub> - Weight of Dry Sample       CL, brown, light brown and gray.     S <sub>b</sub> - Weight of Dry Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1                   | CL, brown, gray and                    | d red.                                 |                       | - Weight of                  | Container                  | Solids Content (%) =                   | $=\left(\frac{S_{\rm b}}{S}\right) \times 100$                                                                 |
| SC, light brown, gray and orange.     Moisture Content (%) =       Sb - Weight of Dry Sample     CL, brown, light brown and gray.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                    | CL, pale green, gray                   | y and light brown.                     |                       | S Weight of V                | Vet Sample                 |                                        |                                                                                                                |
| CL, brown, light brown and gray.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ŝ                    | SC, light brown, gra                   | ay and orange.                         |                       |                              |                            | Moisture Content (%) =                 |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                    | CL, brown, light bro                   | own and gray.                          |                       | S <sub>b</sub> - Weight of C | Jry Sample                 |                                        | ٦<br>۶                                                                                                         |

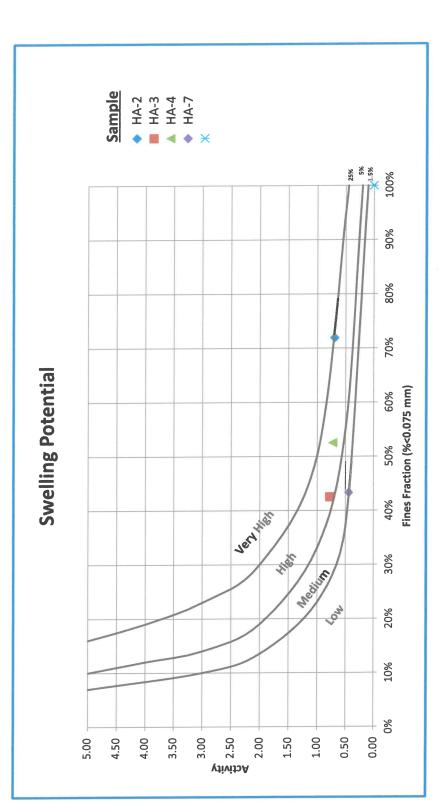
Page 1 of 1

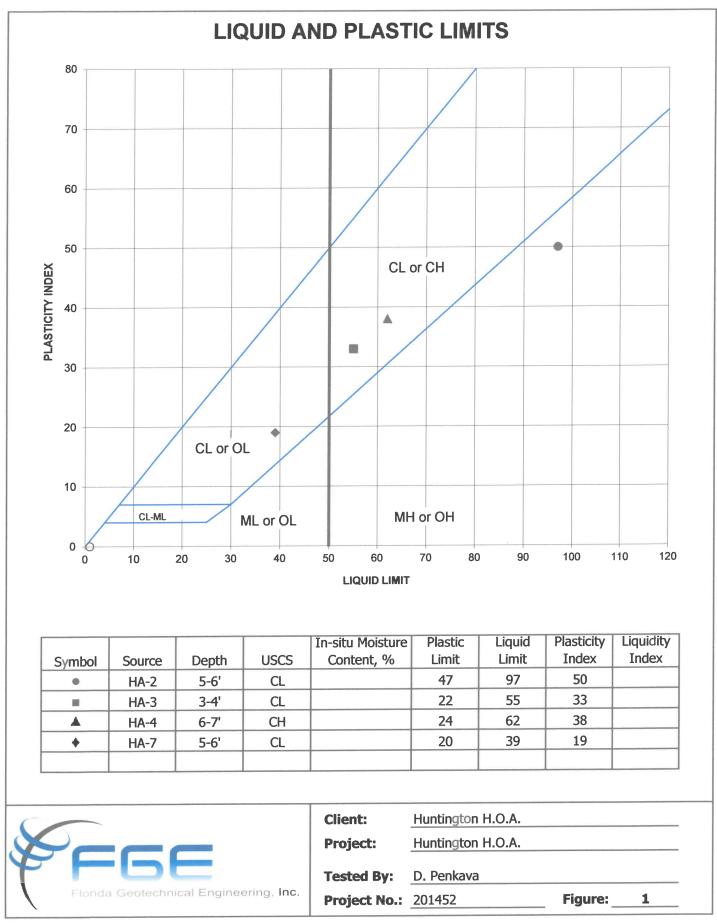
Minus 200 & Organic Lab Report (1-4)

5/4/2021

| 201452<br>Huntington H.O.A<br>ss: A Subdivision Par<br>Range 16 E, Safet<br>Huntington H.O.A<br>4/5/2021<br>D. Penkava<br>Wc + Sw | Section 33, Townsh<br>rbor, FL<br><b>oisture Co</b>  | ip 28 S,<br>ntent/Mi       | ASTM Standard:<br>Test Method:<br>Test Method:<br>(5) HA<br>(6) HA<br>(7) HA<br>(7) HA<br>(8) HA<br>(7) HA<br>(8) HA<br>(8) HA<br>(8) HA<br>(8) HA<br>(8) HA<br>(9) HA<br>(10) HA | ASTM Standard:<br>Test Method:<br>Sample Location: (5)<br>(6)<br>(7)<br>(7)<br>(7)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.<br>0is<br>7<br>7<br>7                                                             | ng #200 Sieve                                        |
|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------|
| Huntington H.O.A<br>A Subdivision Par<br>Range 16 E, Safet<br>Huntington H.O.A<br>4/5/2021<br>D. Penkava<br>Wc + Sw               | Section 33, Townsh<br>Irbor, FL<br><b>Oisture CO</b> | ip 28 S,<br>ntent/Mi<br>wc | Te<br>Sam<br><b>nus #200 Sie</b><br>Solids Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | st Method:<br>ple Location: (5<br>(6<br>(7)<br>(7)<br>(7)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Moisture - A / Passir<br>HA-2; (5-6')<br>HA-3; (3-4')<br>HA-7; (5-6')<br>HA-7; (5-6') | ng #200 Sieve                                        |
| A Subdivision Par<br>Range 16 E, Safet<br>Huntington H.O.A<br>4/5/2021<br>D. Penkava<br>Wc + S <sub>W</sub>                       | Section 33, Townsh<br>Irbor, FL<br><b>Oisture CO</b> | ip 28 S,<br>ntent/Mi<br>wc | sam<br>nus #200 Sie<br>Solids Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>ple Location: (5)</li> <li>(6)</li> <li>(7)</li> <li>(7)</li> <li>(7)</li> <li>(7)</li> <li>(7)</li> <li>(7)</li> <li>(7)</li> <li>(8)</li> <li>(8)</li> <li>(8)</li> <li>(8)</li> <li>(8)</li> <li>(8)</li> <li>(8)</li> <li>(9)</li> <li>(1)</li> <li>(1)</li></ul> | ) HA-2; (5-6')<br>) HA-3; (3-4')<br>) HA-4; (6-7')<br>) HA-7; (5-6')<br><b>SiS</b>    | 2<br>7<br>7<br>7<br>7<br>7<br>7                      |
| Range 16 E, Safet<br>Huntington H.O.A<br>4/5/2021<br>D. Penkava<br>W <sub>c</sub> + S <sub>w</sub>                                | oisture Co                                           | wc Wc                      | nus #200 Sie<br>Solids Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (6<br>(7)<br>(8)<br>(8)<br>(8)<br>(8)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4-7                                                                                   | ¢#200                                                |
| Huntington H.O.A<br>4/5/2021<br>D. Penkava<br>Wc+Sw                                                                               | <b>oisture Co</b>                                    | wc Wc                      | nus #200 Sie<br>Solids Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ne Analys<br>Moisture<br>Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4-7-7-                                                                                | <#200                                                |
| 4/5/2021<br>D. Penkava<br>Wc+Sw                                                                                                   | <b>oisture Co</b>                                    | wc Wc                      | nus #200 Sie<br>Solids Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ve Analys<br>Moisture<br>Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       | <#200                                                |
| D. Penkava<br>Wc + Sw                                                                                                             | <b>oisture Co</b>                                    | mtent/Mi<br>wc             | nus #200 Sie<br>Solids Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>Ve Analys</b><br>Moisture<br>Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                       | <#200                                                |
| W <sub>c</sub> + S <sub>w</sub>                                                                                                   | w <sub>c</sub> + S <sub>b</sub>                      | wc Wc                      | nus #200 Sie<br>Solids Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | We Analys<br>Moisture<br>Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       | <#200                                                |
|                                                                                                                                   | $W_{c} + S_{D}$                                      | , Wc                       | Solids Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Moisture<br>Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -<br>-<br>                                                                            | <#200                                                |
|                                                                                                                                   | $W_c + S_D$                                          | W <sub>c</sub>             | Solids Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                       | <#200                                                |
|                                                                                                                                   |                                                      |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WC T JR                                                                               |                                                      |
|                                                                                                                                   | (6)                                                  | (6)                        | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (6)                                                                                   | (%)                                                  |
| 5 186.10                                                                                                                          | 136.85                                               | 4.64                       | 72.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 37.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 41.73                                                                                 | 71.9%                                                |
| 6 177.37                                                                                                                          | 137.73                                               | 4.62                       | 77.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 81.12                                                                                 | 42.5%                                                |
| 7 192.53                                                                                                                          | 146.19                                               | 4.60                       | 75.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 71.85                                                                                 | 52.5%                                                |
| 8 199.26                                                                                                                          | 159.76                                               | 4.61                       | 79.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 92.55                                                                                 | 43.3%                                                |
| alumes                                                                                                                            | Coil Docreintion                                     |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | For                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Formulas                                                                              |                                                      |
|                                                                                                                                   |                                                      |                            | 20 142:000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                       | /s./                                                 |
| 5 CL, gray and green.<br>6 CL, dark grav.                                                                                         |                                                      |                            | w <sup>c</sup> – weidut of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Container                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Solids Content (%) =                                                                  | $\left(\frac{\overline{s}}{S_{w}}\right) \times 100$ |
|                                                                                                                                   | and orange.                                          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | vet sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Moisture Content (%) =                                                                | = (Sw-Sp) x 100                                      |
| 8 CL, light brown, brown, gray and red.                                                                                           | n, gray and red.                                     |                            | S <sub>b</sub> - Weight of Dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Jry Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                       | ີ<br>ຈິ                                              |

5/4/2021

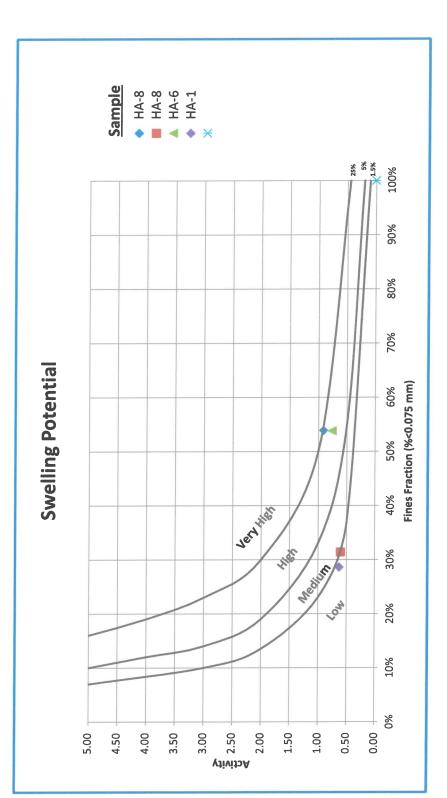

Page 1 of 1

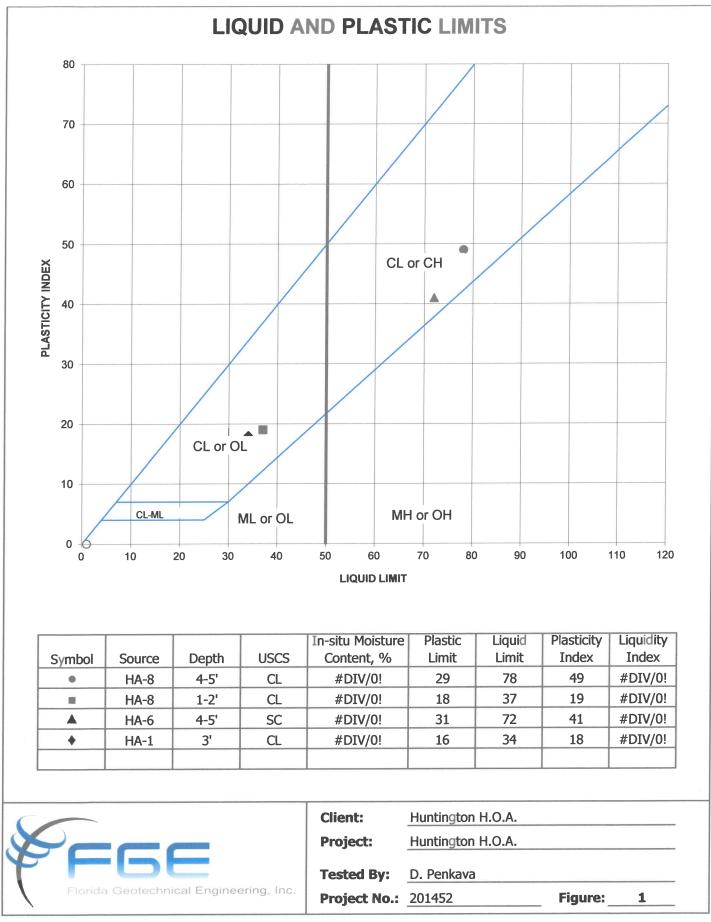

Minus 200 & Organic Lab Report (5-8)



# Laboratory Report Swelling Potential

| Plasticity Index<br>%        | 50   | 33   | 38   | 6    |
|------------------------------|------|------|------|------|
| Liquid Limit<br>%            | 97   | 55   | 62   | 39   |
| Plastic Limit<br>%           | 47   | 22   | 24   | 20   |
| Activity                     | 0.70 | 0.78 | 0.72 | 0.44 |
| Fines Fraction<br>% <0.075mm | 72%  | 43%  | 53%  | 43%  |
| USCS                         | СГ   | СL   | Ю    | С    |
| Sample                       | HA-2 | HA-3 | HA-4 | HA-7 |






# Laboratory Report Swelling Potential

| Plasticity Index<br>%        | 49   | 19   | 41   | 18   |  |
|------------------------------|------|------|------|------|--|
| Liquid Limit<br>%            | 78   | 37   | 72   | 34   |  |
| Plastic Limit<br>%           | 29   | 18   | 31   | 16   |  |
| Activity                     | 0.91 | 0.61 | 0.76 | 0.63 |  |
| Fines Fraction<br>% <0 075mm | 54%  | 31%  | 54%  | 29%  |  |
| uscs                         | сL   | сГ   | SC   | С    |  |
| Sample                       | HA-8 | HA-8 | HA-6 | HA-1 |  |



